Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Advances in Mechanical Engineering ; 14(11), 2022.
Article in English | ProQuest Central | ID: covidwho-2138990

ABSTRACT

Droplet impact on a flexible substrate is a prevalent phenomenon in nature and various advanced technologies such as soft bio-printing, tissue engineering, smart biomaterials and flexible electronics. Recent rapid advancement in new functional surfaces, ultra-high-speed imaging, nanotechnology, deep learning, advanced computational strength and the relation between fluid dynamics and interfacial science have intensified the physical understanding of droplet impact on soft materials. Once a droplets impacts on a solid surface, it deposits, spreads, rebounds or splashes. Given the importance of the droplet impact onto soft substrates in biotechnology, medicine and advanced flexible electronics, a deep physical understanding of such complex phenomenon is vital. This review initially presents the liquid-solid interaction physics and relevant interfacial science. Next, this review discusses the physics of droplet impact on soft materials with different physical and interfacial characteristics. Moreover, this review presents advancements in droplet impact on elastic materials relevant to new technologies such as soft electronics, elastic smart biomaterials, tissue engineering and the fight against COVID-19 pandemic. Finally, this review lays out future research directions related to current problems in such complex physical phenomenon.

2.
Biosens Bioelectron ; 179: 113099, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1086796

ABSTRACT

The SARS-CoV-2 pandemic, an ongoing global health crisis, has revealed the need for new technologies that integrate the sensitivity and specificity of RT-PCR tests with a faster time-to-detection. Here, an emulsion loop-mediated isothermal amplification (eLAMP) platform was developed to allow for the compartmentalization of LAMP reactions, leading to faster changes in emulsion characteristics, and thus lowering time-to-detection. Within these droplets, ongoing LAMP reactions lead to adsorption of amplicons to the water-oil interface, causing a decrease in interfacial tension, resulting in smaller emulsion diameters. Changes in emulsion diameter allow for the monitoring of the reaction by use of angle-dependent light scatter (based off Mie scatter theory). Mie scatter simulations confirmed that light scatter intensity is diameter-dependent and smaller colloids have lower intensity values compared to larger colloids. Via spectrophotometers and fiber optic cables placed at 30° and 60°, light scatter intensity was monitored. Scatter intensities collected at 5 min, 30° could statistically differentiate 10, 103, and 105 copies/µL initial concentrations compared to NTC. Similarly, 5 min scatter intensities collected at 60° could statistically differentiate 105 copies/µL initial concentrations in comparison to NTC. The use of both angles during the eLAMP assay allows for distinction between high and low initial target concentrations. The efficacy of a smartphone-based platform was also tested and had a similar limit of detection and assay time of less than 10 min. Furthermore, fluorescence-labeled primers were used to validate target nucleic acid amplification. Compared to existing LAMP assays for SARS-CoV-2 detection, these times-to-detections are very rapid.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Dynamic Light Scattering/instrumentation , Emulsions/chemistry , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , SARS-CoV-2/isolation & purification , Biosensing Techniques/economics , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/methods , Dynamic Light Scattering/economics , Dynamic Light Scattering/methods , Equipment Design , Humans , Limit of Detection , Molecular Diagnostic Techniques/economics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/methods , Smartphone , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL